Copied to
clipboard

G = C3×C23.9D4order 192 = 26·3

Direct product of C3 and C23.9D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×C23.9D4, C22⋊C43C12, (C22×C12)⋊3C4, (C22×C4)⋊2C12, (C2×C6).8C42, C24.2(C2×C6), C23.2(C3×Q8), (C22×C6).2Q8, C22.1(C4×C12), C23.6(C2×C12), C23.37(C3×D4), C6.31(C23⋊C4), (C22×C6).152D4, (C23×C6).1C22, C6.26(C2.C42), (C3×C22⋊C4)⋊6C4, C2.3(C3×C23⋊C4), C22.4(C3×C4⋊C4), (C2×C6).21(C4⋊C4), (C6×C22⋊C4).4C2, (C2×C22⋊C4).2C6, (C22×C6).17(C2×C4), C22.8(C3×C22⋊C4), C2.7(C3×C2.C42), (C2×C6).131(C22⋊C4), SmallGroup(192,148)

Series: Derived Chief Lower central Upper central

C1C22 — C3×C23.9D4
C1C2C22C23C24C23×C6C6×C22⋊C4 — C3×C23.9D4
C1C2C22 — C3×C23.9D4
C1C2×C6C23×C6 — C3×C23.9D4

Generators and relations for C3×C23.9D4
 G = < a,b,c,d,e,f | a3=b2=c2=d2=e4=1, f2=bcd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, ece-1=fcf-1=cd=dc, de=ed, df=fd, fef-1=bde-1 >

Subgroups: 298 in 142 conjugacy classes, 58 normal (22 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C23, C23, C23, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C22×C4, C22×C4, C24, C2×C12, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C2×C22⋊C4, C3×C22⋊C4, C3×C22⋊C4, C22×C12, C22×C12, C23×C6, C23.9D4, C6×C22⋊C4, C6×C22⋊C4, C3×C23.9D4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C12, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C12, C3×D4, C3×Q8, C2.C42, C23⋊C4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C23.9D4, C3×C2.C42, C3×C23⋊C4, C3×C23.9D4

Smallest permutation representation of C3×C23.9D4
On 48 points
Generators in S48
(1 15 11)(2 16 12)(3 13 9)(4 14 10)(5 33 29)(6 34 30)(7 35 31)(8 36 32)(17 28 21)(18 25 22)(19 26 23)(20 27 24)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 31)(2 32)(3 29)(4 30)(5 13)(6 14)(7 15)(8 16)(9 33)(10 34)(11 35)(12 36)(17 37)(18 38)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)(25 46)(26 47)(27 48)(28 45)
(1 31)(2 20)(3 29)(4 18)(5 13)(6 46)(7 15)(8 48)(9 33)(10 22)(11 35)(12 24)(14 25)(16 27)(17 37)(19 39)(21 41)(23 43)(26 47)(28 45)(30 38)(32 40)(34 42)(36 44)
(1 39)(2 40)(3 37)(4 38)(5 28)(6 25)(7 26)(8 27)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(17 29)(18 30)(19 31)(20 32)(21 33)(22 34)(23 35)(24 36)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 29 39 17)(3 31 37 19)(5 47 28 15)(6 25)(7 45 26 13)(8 27)(9 35 41 23)(11 33 43 21)(18 30)(20 32)(22 34)(24 36)

G:=sub<Sym(48)| (1,15,11)(2,16,12)(3,13,9)(4,14,10)(5,33,29)(6,34,30)(7,35,31)(8,36,32)(17,28,21)(18,25,22)(19,26,23)(20,27,24)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,31)(2,32)(3,29)(4,30)(5,13)(6,14)(7,15)(8,16)(9,33)(10,34)(11,35)(12,36)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,46)(26,47)(27,48)(28,45), (1,31)(2,20)(3,29)(4,18)(5,13)(6,46)(7,15)(8,48)(9,33)(10,22)(11,35)(12,24)(14,25)(16,27)(17,37)(19,39)(21,41)(23,43)(26,47)(28,45)(30,38)(32,40)(34,42)(36,44), (1,39)(2,40)(3,37)(4,38)(5,28)(6,25)(7,26)(8,27)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,29)(18,30)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,29,39,17)(3,31,37,19)(5,47,28,15)(6,25)(7,45,26,13)(8,27)(9,35,41,23)(11,33,43,21)(18,30)(20,32)(22,34)(24,36)>;

G:=Group( (1,15,11)(2,16,12)(3,13,9)(4,14,10)(5,33,29)(6,34,30)(7,35,31)(8,36,32)(17,28,21)(18,25,22)(19,26,23)(20,27,24)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,31)(2,32)(3,29)(4,30)(5,13)(6,14)(7,15)(8,16)(9,33)(10,34)(11,35)(12,36)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,46)(26,47)(27,48)(28,45), (1,31)(2,20)(3,29)(4,18)(5,13)(6,46)(7,15)(8,48)(9,33)(10,22)(11,35)(12,24)(14,25)(16,27)(17,37)(19,39)(21,41)(23,43)(26,47)(28,45)(30,38)(32,40)(34,42)(36,44), (1,39)(2,40)(3,37)(4,38)(5,28)(6,25)(7,26)(8,27)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,29)(18,30)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,29,39,17)(3,31,37,19)(5,47,28,15)(6,25)(7,45,26,13)(8,27)(9,35,41,23)(11,33,43,21)(18,30)(20,32)(22,34)(24,36) );

G=PermutationGroup([[(1,15,11),(2,16,12),(3,13,9),(4,14,10),(5,33,29),(6,34,30),(7,35,31),(8,36,32),(17,28,21),(18,25,22),(19,26,23),(20,27,24),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,31),(2,32),(3,29),(4,30),(5,13),(6,14),(7,15),(8,16),(9,33),(10,34),(11,35),(12,36),(17,37),(18,38),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44),(25,46),(26,47),(27,48),(28,45)], [(1,31),(2,20),(3,29),(4,18),(5,13),(6,46),(7,15),(8,48),(9,33),(10,22),(11,35),(12,24),(14,25),(16,27),(17,37),(19,39),(21,41),(23,43),(26,47),(28,45),(30,38),(32,40),(34,42),(36,44)], [(1,39),(2,40),(3,37),(4,38),(5,28),(6,25),(7,26),(8,27),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(17,29),(18,30),(19,31),(20,32),(21,33),(22,34),(23,35),(24,36)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,29,39,17),(3,31,37,19),(5,47,28,15),(6,25),(7,45,26,13),(8,27),(9,35,41,23),(11,33,43,21),(18,30),(20,32),(22,34),(24,36)]])

66 conjugacy classes

class 1 2A2B2C2D···2I3A3B4A···4L6A···6F6G···6R12A···12X
order12222···2334···46···66···612···12
size11112···2114···41···12···24···4

66 irreducible representations

dim11111111222244
type+++-+
imageC1C2C3C4C4C6C12C12D4Q8C3×D4C3×Q8C23⋊C4C3×C23⋊C4
kernelC3×C23.9D4C6×C22⋊C4C23.9D4C3×C22⋊C4C22×C12C2×C22⋊C4C22⋊C4C22×C4C22×C6C22×C6C23C23C6C2
# reps132846168316224

Matrix representation of C3×C23.9D4 in GL6(𝔽13)

100000
010000
009000
000900
000090
000009
,
100000
010000
000110
001010
0000120
0000111
,
1200000
0120000
0001121
0010121
000010
0000212
,
100000
010000
0012000
0001200
0000120
0000012
,
1280000
310000
000110
000100
0011200
00011012
,
5120000
080000
0001200
001001
0000112
0000012

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,12,11,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,12,12,1,2,0,0,1,1,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,3,0,0,0,0,8,1,0,0,0,0,0,0,0,0,1,0,0,0,1,1,12,11,0,0,1,0,0,0,0,0,0,0,0,12],[5,0,0,0,0,0,12,8,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,12,12] >;

C3×C23.9D4 in GAP, Magma, Sage, TeX

C_3\times C_2^3._9D_4
% in TeX

G:=Group("C3xC2^3.9D4");
// GroupNames label

G:=SmallGroup(192,148);
// by ID

G=gap.SmallGroup(192,148);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,344,3027,2111]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^4=1,f^2=b*c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,e*c*e^-1=f*c*f^-1=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*d*e^-1>;
// generators/relations

׿
×
𝔽